Search results for "dynamic stability"
showing 10 items of 12 documents
Evaluation of Risk Stratification Markers and Models in Acute Pulmonary Embolism: Rationale and Design of the MARS-PE (Mainz Retrospective Study of P…
2018
An acute pulmonary embolism (PE) is a crucial event in patients’ life and connected with serious morbidity and mortality. Regarding a high case-fatality rate, early and accurate risk-stratification is crucial. Risk for mortality and complications are closely related to hemodynamic stability and cardiac adaptations. The currently recommended risk-stratification approach is not overall simple to use and might delay the identification of those patients, who should be monitored more closely and may treated with more aggressive treatment strategies. Additionally, some risk-stratification criteria for the imaging procedures are still imprecise. Summarized, the search for the most effective risk-s…
Quantifying foot placement variability and dynamic stability of movement to assess control mechanisms during forward and lateral running
2015
Research has indicated that human walking is more unstable in the secondary, rather than primary plane of progression. However, the mechanisms of controlling dynamic stability in different planes of progression during running remain unknown. The aim of this study was to compare variability (standard deviation and coefficient of variation) and dynamic stability (sample entropy and local divergence exponent) in anterior–posterior and medio-lateral directions in forward and lateral running patterns. For this purpose, fifteen healthy, male participants ran in a forward and lateral direction on a treadmill at their preferred running speeds. Coordinate data of passive reflective markers attached …
Biogenic Selenium Nanoparticles: A Fine Characterization to Unveil Their Thermodynamic Stability
2021
Among the plethora of available metal(loid) nanomaterials (NMs), those containing selenium are interesting from an applicative perspective, due to their high biocompatibility. Microorganisms capable of coping with toxic Se-oxyanions generate mostly Se nanoparticles (SeNPs), representing an ideal and green alternative over the chemogenic synthesis to obtain thermodynamically stable NMs. However, their structural characterization, in terms of biomolecules and interactions stabilizing the biogenic colloidal solution, is still a black hole that impairs the exploitation of biogenic SeNP full potential. Here, spherical and thermodynamically stable SeNPs were produced by a metal(loid) tolerant Mic…
A new simple approach to evaluate pedogenic clay transformation in a Vertic Calcisol
2006
The aim of this study is to characterize the pedogenic clay minerals by using simple approach: Mixing mineralogical and geochemical findings. The fine clay fractions (< 0.1 μm) of a Vertic Cambisol profile were studied by means of X-ray diffraction (XRD), infrared spectroscopy (FTIR) and cation exchange capacity (CEC). Qualitative and quantitative mineralogical compositions of the clay mixture were determined. Moreover, chemical equilibria and thermodynamic stabilities of minerals (calcite, gypsum, kaolinite, smectites and illites) were studied using results of ionic activities obtained from total concentration of various aqueous species in water extracts from soil-saturated pastes. XRD ana…
Convective instability in proto-neutron stars
2000
The linear hydrodynamic stability of proto-neutron stars (PNSs) is considered taking into account dissipative processes such as neutrino transport and viscosity. We obtain the general instability criteria which differ essentially from the well-known Ledoux criterion used in previous studies. We apply the criteria to evolutive models of PNSs that, in general, can be subject to the various known regimes such as neutron fingers and convective instabilities. Our results indicate that the fingers instability arises in a more extended region of the stellar volume and lasts a longer time than expected.
A state-space approach to dynamic stability of fractional-order systems: The extended Routh-Hurwitz theorem
2017
This paper considers the case of Beck’s column, a linear elastic cantilever column subjected to a constant follower load at its free end. The column foundation is modeled as bed of hereditary elements that react with a vertical force distributed along the beam axis. The reacting supports are modeled with spring-pot element that is a two parameters mechanical elements (C; ) with an intermediate behavior between spring and dashpot. The constitutive equation of the spring-pot involves the so called fractional order derivatives and dynamic stability problem in presence of fractional-order operator must be faced for the Beck’s column. In this study , the authors generalize Routh-Hurwitz theorem …
Optimization of ZnO:Al/Ag/ZnO:Al structures for ultra-thin high-performance transparent conductive electrodes
2012
Al-doped ZnO (AZO)/Ag/AZO multilayer coatings (50-70 nm thick) were grown at room temperature on glass substrates with different silver layer thickness, from 3 to 19 nm, by using radio frequency magnetron sputtering. Thermal stability of the compositional, optical and electrical properties of the AZO/Ag/AZO structures were investigated up to 400 °C and as a function of Ag film thickness. An AZO film as thin as 20 nm is an excellent barrier to Ag diffusion. The inclusion of 9.5 nm thin silver layer within the transparent conductive oxide (TCO) material leads to a maximum enhancement of the electro-optical characteristics. The excellent measured properties of low resistance, high transmittanc…
Ultralow thermal conductivity in 1D and 2D imidazolium-based lead halide perovskites
2021
Low-dimensional hybrid organic–inorganic metal halide perovskites are rapidly emerging as a fascinating sub-class of the three-dimensional parent structures, thanks to their appealing charge and thermal transport properties, paired to better chemical and thermal stabilities. Extensive investigations of the thermal behavior in these systems are of paramount relevance to understand their optoelectronic and thermoelectric applications. Herein, we present a complete thermophysical characterization of imidazolium lead iodide, (IMI)PbI3, a 1D pseudo-perovskite with chains of face-sharing octahedra, and histammonium lead iodide, (HIST)PbI4, a 2D layered perovskite with corner-sharing octahedra. Up…
Acetylated nucleosome assembly on telomeric DNAs
2003
Abstract The role of histone N-terminal domains on the thermodynamic stability of nucleosomes assembled on several different telomeric DNAs as well as on ‘average’ sequence DNA and on strong nucleosome positioning sequences, has been studied by competitive reconstitution. We find that histone tails hyperacetylation favors nucleosome formation, in a similar extent for all the examined sequences. On the contrary, removal of histone terminal domains by selective trypsinization causes a decrease of nucleosome stability which is smaller for telomeres compared to the other sequences examined, suggesting that telomeric sequences have only minor interactions with histone tails. Micrococcal nuclease…
Emergent pattern formation of active magnetic suspensions in an external field
2020
We study collective self-organization of weakly magnetic active suspensions in a uniform external field by analyzing a mesoscopic continuum model that we have recently developed. Our model is based on a Smoluchowski equation for a particle probability density function in an alignment field coupled to a mean-field description of the flow arising from the activity and the alignment torque. Performing linear stability analysis of the Smoluchowski equation and the resulting orientational moment equations combined with non-linear 3D simulations, we provide a comprehensive picture of instability patterns as a function of strengths of activity and magnetic field. For sufficiently high activity and…